
 
 
  
 
 

     Peer-reviewed research article                                                                    Forests Monitor 2(1), 49-96, 2025                             

49 www.forestsmonitor.com  

 

Building virtual forest landscapes to support forest 
management: the challenge of parameterization 

 

Marco Mina,a,* Sebastian Marzini,a,b  Alice Crespi, c Katharina Albrich. d,e 

a:  Eurac Research, Institute for Alpine Environment, Bolzano, Italy. 
b: Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Italy. 
c:  Eurac Research, Center for Climate Change and Transformation, Bolzano, Italy. 

d: Natural Resources Institute Finland (LUKE), Helsinki, Finland.  
e: University of Eastern Finland, School of Forest Sciences, Joensuu, Finland 
*Corresponding author: E-mail: Marco.Mina@eurac.edu 

 
 

ABSTRACT 

 

Keywords 

 
calibration, disturbance modelling, 

European Alps, forest landscape 

models, forest modelling, model 

initialization  
 

Citation 

 
Mina M, Marzini S, Crespi A, Albrich 

K. 2025. Building virtual forest 

landscapes to support forest 

management: the challenge of 

parameterization. For. Monit. 2(1): 49-

96.  

https://doi.org/10.62320/fm.v2i1.19 

 

Received:  15 January 2025 

Accepted:  16 February 2025 

Published: 28 February 2025 

 

 

Copyright: © 2025 by the authors. 

Licensee Forest Business Analytics, 

Łódź, Poland. This open-access article 

is distributed under a Creative 

Commons Attribution 4.0 International 

License (CC BY). 

 

Simulation models are important tools to study the impacts of climate change and 

natural disturbances on forest ecosystems. Being able to track tree demographic 

processes in a spatially explicit manner, process-based forest landscape models are 

considered the most suitable to provide robust projections that can aid decision-making 

in forest management. However, landscape models are challenging to parameterize and 

setting up new study areas for application studies largely depends on data availability. 

The aim of this study is to demonstrate the parameterization process, including model 

testing and evaluation, for setting up a study area in the Italian Alps in a process-based 

forest landscape model using available data. We processed soil, climate, carbon pools, 

vegetation, disturbances and forest management data, and ran iterative spin-up 

simulations to generate a virtual landscape best resembling current conditions. Our 

results demonstrated the feasibility of initializing forest landscape models with data 

that are typically available from forest management plans and national forest 

inventories, as well as openly available mapping products. Evaluation tests proved the 

ability of the model to capture the environmental constraints driving regeneration 

dynamics and inter-specific competition in forests of the Italian Alps, as well as to 

simulate natural disturbances and carbon dynamics. The model can subsequently be 

applied to investigate forest landscape development under a suite of future scenarios 

and provide recommendations for adapting forest management decisions. 
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INTRODUCTION 

 

Forests are vital components of Alpine landscapes and provide a wide range of ecosystem services 

to human society, such as habitat for biodiversity, timber, protection against natural hazards, and 

recreation (Gret-Regamey et al. 2012, Mina et al. 2017). Forests are crucial contributors to the 

global climate system and are often found at the center of discussions on climate change mitigation 

and nature-based adaptation solutions (Bonan 2008, Kaarakka et al. 2021). However, forests' 

capacity to maintain the provision of these important services is threatened by the impact of climate 

change and related natural disturbances (Millar and Stephenson 2015, Seidl et al. 2017, McDowell 

et al. 2020). Disturbances such as large windthrow events, insect outbreaks, and forest fires have 

significantly increased in Europe since the 1950s due to warming climate and other abiotic factors 

such as forest management (Patacca et al. 2023). Recent studies have shown that these disturbance 

events will likely be amplified by climate change (Seidl et al. 2017, Forzieri et al. 2021, Grünig et 

al. 2023). Given the recent increasing trend in tree mortality worldwide (ITMN 2025), new 

adaptations in forest management are needed to guarantee the future provision of key services 

provided by forests (Mina et al. 2017, Tognetti et al. 2022, Blattert et al. 2024). The ongoing debate 

regarding the role of forests in climate change mitigation calls for reliable tools that are able to 

assess how forests are likely to evolve in the coming decades (Verkerk et al. 2020, Pan et al. 2024). 

In complement to empirical approaches, state-of-the-art modelling tools are needed to evaluate the 

long-term impact of environmental changes and potential forest adaptations in the future (Seidl 

2017, Bugmann and Seidl 2022). Forest simulation models have become pivotal tools in forest 

resilience research (Shifley et al. 2017, Albrich et al. 2020b) and, in recent years, have been widely 

applied for supporting forest management in a changing environment (Fontes et al. 2010, Bosela 

et al. 2022). In particular, process-based forest landscape models, which can track tree 

demographic processes influencing forest dynamics in a spatially explicit manner, are considered 

the most suitable tools for investigating forest development under global change (Gustafson 2013, 

Bosela et al. 2022). These models account for species sensitivity to changing environmental 

conditions and can assess the potential impact of natural disturbances such as windthrow, insect 

outbreaks, and forest fires, which are drivers that cannot be disregarded anymore when studying 

forest ecosystem dynamics (Seidl et al. 2011). Such models are also powerful tools to quantify 
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carbon stocks as they can track the development of carbon pools dynamically (Albrich et al. 2023). 

Additionally, being able to simulate the effect of management interventions, such models can be 

applied to assess the potential of different silvicultural strategies to boost forest resilience to global 

change (Rammer and Seidl 2015, Mina et al. 2022). Therefore, forest landscape models can 

provide key information to decision makers to assess the effect of long-term strategies in forest 

management and climate-smart forestry (Bosela et al. 2022, Holland et al. 2022).    

Despite their potential, the main challenge for applying such models lies in their parameterization 

(Scheller 2018, Reese et al. 2025). With the generic term parameterization, we herewith refer not 

only to the procedure of estimating parameters for ecological processes and statistical relationships 

within a model, but to the entire process required for setting up a new study area or a landscape 

for an application, which includes: model initialization (i.e., landscape and forest extent, 

biophysical and climate conditions, initial vegetation via spin-up simulations, information 

disturbances and/or management), model testing and calibration (at site- or landscape-level using 

e.g., inventory data), and final evaluation and/or validation. Compared to performing a simulation 

experiment, parameterizing an entirely new study area in forest landscape models can take a 

significant amount of time and effort, which – if executed in parallel with collecting and preparing 

all the necessary data – can easily take longer than a year of full-time work (Hof et al. 2024). 

Despite involving multiple methodological steps, which differ depending on the available data and 

on the complexity of the model, such parameterization process is usually condensed to short 

methodological sections or relegated to the supplementary material in articles describing model 

applications (Seidl et al. 2019, Mina et al. 2021, Thom et al. 2022). Only a few studies focused on 

parameterization and calibration processes for forest landscape models (Suárez-Muñoz et al. 2021, 

Willis et al. 2023). This is a gap in the existing literature. Although such studies may not present 

future projections of forest development, they are yet invaluable to other researchers as they offer 

practical examples of how to accurately establish a virtual forest landscape using existing 

environmental and forest management data. This type of methodological studies can help in 

speeding up successive calibration and initialization procedures required to apply forest landscape 

models in new regions. Successional processes and long-term projections in forest models are 

highly sensitive to initial conditions and model parameters, therefore manuscripts documenting 

the parameterization process for setting up new study areas for specific models should be promoted 

to foster further applications and reproducibility (Furniss et al. 2022).  
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The aim of this study is to demonstrate the process for setting up new study areas for the process-

based forest landscape and disturbance model iLand (Rammer et al. 2024). Our goal is to provide 

detailed documentation on how to generate a virtual forest landscape that best resembles current 

vegetation conditions using data that are typically available for Italian forests. The documented 

process includes performing spin-up simulations with historic forest management regimes, which 

is needed to integrate all the legacies of past management and land use. The final goal of this 

parameterization process is a virtual replica of the forest in a study area that is ready for simulating 

forest dynamics and its evolution under future scenarios, including different forest management 

strategies. We also discuss the potential and challenges of using complex simulation models in the 

context of climate change adaptations. 

 

MATERIALS AND METHODS 

 

Study area 

Our study area is located in the province of South Tyrol, in northern Italy (46°30’0”N, 11°21’0”E). 

It includes the upper portion of an inner alpine valley called Vinschgau in German or Val Venosta 

in Italian (hereafter Venosta). The region encompasses not merely a single valley, as is commonly 

implied when discussing landscape scales in mountainous areas, but rather constitutes a complex 

mountainous territory. In addition to the main Venosta valley, it incorporates three lateral valleys 

with various elevational gradients and expositions: the Val Mazia/Matschertal in the north, Val 

Trafoi/Trafoital in the southwest, and the Val di Solda/Suldental in the southeast (Figure 1). The 

latter two are both embedded within the Stelvio/Stilfs National Park. We selected this study area 

together with the regional forest services because it is representative of the multiplicity of forest 

types across the South Tyrol province (Autonomous Province of Bolzano/Bozen 2010). The study 

area was also designed to run future model applications separately on different, smaller landscapes. 

The elevation ranges from 850 meters (m) at the valley bottom to circa 2600 m above sea level 

(a.s.l). The extent of the overall area (hereafter project area) is 30,426 hectares (ha), of which 

12,589 ha is covered by forest (hereafter stockable area). The layer of forest cover was obtained 

from the Copernicus high-resolution layers of forest-type product for the reference year 2018 at 

10 m resolution (EEA 2018). Cells overlapping with agricultural and urban areas, as well as 
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riparian forests and tree patches at the valley bottom close to urban settlements, were manually 

removed by orthophoto interpretation. This resulted in a clean delineation between forest and non-

forest below approximately 900-1000 m a.s.l. (Figure 1). The uppermost border of the project area 

was delineated with the contour line at 2600 m a.s.l. We also left a buffer of approximately one 

kilometer in the direction east and west between the forest cover and the project area for light 

influence and for the seed belt (see further below). 

 
Figure 1. The study area in the upper Venosta/Vinschgau and its three side landscapes (a- Val Mazia; 
b- Val Trafoi; c- Val Solda). The project area (i.e., boundaries of the biophysical and climate 

parameters) is highlighted with brighter colors, while the stockable forest area is shown with the black 
lines. Location of the study area within South Tyrol (red line) is shown in the small inset map. Photos 
show three different forests within the area: 1- a subalpine larch-Stone pine in Val Mazia; 2- a black 
pine-pubescent oak at the valley bottom; 3- a spruce forest under the Ortler mountain in Trafoi.  
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Simulation model 

The focal model of this study is iLand, a process-based model that simulates demographic 

processes of trees, such as growth, dispersion, regeneration, and mortality, in a spatially explicit 

manner (Seidl et al. 2012a). The model can be applied with a multi-scale approach from the single 

tree to the stand to the landscape scale, giving the users ample flexibility in application (Rammer 

et al. 2024). Rather than modelling forest growth with empirical functions fit to measured data, the 

model simulates ecological mechanisms such as photosynthesis and carbon allocation explicitly. 

Primary productivity is directly influenced by climatic conditions (e.g., temperature, precipitation, 

solar radiation), CO2 concentrations, soil nutrients, and competition for light (Thom et al. 2024). 

Regeneration accounts for seed availability and dispersal, and for seedling and sapling 

establishment (Holzer et al. 2024), while tree mortality is modelled probabilistically depending on 

tree age and external stress factors. In addition to being process-based – and thus suitable to make 

inferences under novel environmental conditions – iLand is capable of simulating forest 

disturbances (e.g., bark beetles, wind, fire) interactively with climate change (Dollinger et al. 

2024). For instance, the wind disturbance module allows the simulation of a process-oriented 

manner the impact of a storm event on trees within the landscape, which depends on wind data 

and forest structure and composition (Seidl et al. 2014). Wind damages interact with simulated 

soil conditions (e.g., differentiating between tree uprooting and stem breakages depending on soil 

freezing) and are performed for all landscape cells with vertical differences over 10 meters, 

referred to as edges (Seidl et al. 2014). The bark beetle module emulates outbreaks of Ips 

typographus explicitly considering the beetle´s phenology, colonization, dispersal, and tree 

defense, as well as temperature-related overwintering (Seidl and Rammer 2017). A flexible 

management module also allows simulating forest management activities and silvicultural 

practices in relation to stand characteristics and changing environmental conditions (Rammer and 

Seidl 2015). Differently from other forest landscape models that estimate belowground biomass 

with allometric equations, iLand explicitly tracks above- and below-ground carbon pools and 

fluxes such as coarse woody debris, snags, stumps, soil organic matter, and can therefore be 

applied to study forest carbon dynamics (Albrich et al. 2023). To account for stochasticity in the 

simulations, the model is typically run for 10-20 replicates per scenario (Seidl et al. 2014, Dollinger 

et al. 2024). The model has already been calibrated for the main European forest species and has 

been widely applied across different landscapes in the Alps (Seidl et al. 2012b, Thom et al. 2018). 
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Given its ability to project forest landscape dynamics under climate change and disturbance 

factors, the model can be applied to provide important recommendations to forest managers, 

pending that it is first initialized and calibrated in a study area that is of high interest to decision-

makers.  

Model initialization 

The main inputs required by the model to be able to simulate forest dynamics are: 1) biophysical 

properties, 2) climate data, and 3) initial vegetation conditions. The first two are defined in an 

environment grid at a resolution of 100 m (cells referred to as resource units), while the third needs 

to be delineated at a horizontal resolution of 10 m (Rammer et al. 2024). Biophysical properties 

such as soil depth, texture, and plant-available nitrogen are considered to be homogenous at the 

level of resource unit and typically do not change during a simulation interval (Seidl et al. 2012a). 

Climate variables such as minimum and maximum temperature, precipitation, global radiation, 

and vapor pressure deficit are implemented as daily time series at the level of resource unit but are 

typically aggregated spatially into climate clusters – i.e., regions of the landscape with similar 

climatic conditions – to reduce the amount of data processed by the model (details in the section 

on Climate). Initial vegetation conditions consist of species- and size-specific data on live 

individual trees and regeneration. This is typically derived by combining available plot-level data 

(e.g., forest inventory) with spatially explicit products such as maps of forest management plans, 

canopy height from LiDAR, or maps of forest typologies describing current forest structure and 

composition. As this data is rarely available at high resolution for large areas, approximate forest 

conditions are often generated using spin-up simulations (see section on Vegetation). In this 

section, we describe the process of preparing all the necessary data for initializing the Venosta 

study area within iLand. 

Biophysical parameters 

Biophysical properties are important drivers of ecological processes (e.g., establishment, growth) 

acting in forest ecosystems at different spatial scale (Ehrenfeld et al. 2005). In iLand, hydrological 

balance and available soil water for plants are affected by soil properties such as soil depth and 

texture, while soil nitrogen has a direct effect on plant growth as a proxy for site fertility (Seidl et 

al. 2012a). For the Venosta study area, we made the best use of available data to derive high-

resolution, spatially explicit datasets of soil properties and plant available nitrogen estimates. 
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Additionally, as our aim was to set up the model with the dynamic carbon cycling module, we 

estimated current carbon pools by imputing data from forest inventory plots into forest-type maps 

within our study area (see below). 

Soil depth and texture 

We obtained soil depth and texture variables from soil maps that were developed for the 

administrative unit Vinschgau/Val Venosta in South Tyrol for a past research project (Interreg CH-

IT IRKIS;  Zischg 2012). In that context, soil maps were derived by merging data from multiple 

sources such as forest-type map, geological map, digital elevation model (DEM), land use map, 

and orthophoto. Values of soil depth in forest areas were estimated from available information in 

the forest-type map of South Tyrol (Autonomous Province of Bolzano/Bozen 2010) while non-

forest areas were derived by interpolating the geological and vegetation maps together with the 

DEM at 10-m resolution. Soil texture (percentage of sand/silt/clay) maps were derived from the 

forest types containing information on soil characteristics in categorical classes. We estimated the 

percent values of sand, silt and clay for each class using the texture triangle, averaging minimum 

and maximum values of the corresponding class in the triangle (Moreno-Maroto and Alonso-

Azcárate 2022). In the end, we merged all this information in raster maps at 100 m resolution 

covering the entire area (Figure 2). 

 

Figure 2. Soil properties for the study area: soil depth (cm) and percentages of sand, silt, and clay 
(%). 
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Available nitrogen 

Nitrogen has been observed to be a key factor in limiting plants’ growth and development 

(Rennenberg and Dannenmann 2015). In iLand, plant-available nitrogen (Nav) is used as an 

indicator of nutrient limitation to derive a soil nutrient modifier affecting the growth of tree species. 

If of interest for a given research objective, the model can be allowed to simulate plant-soil 

feedback dynamically but this requires additional inputs and increases result uncertainty. In most 

iLand applications, Nav is considered to be static at the resource unit level, following the fertility 

rating approach by Landsberg and Waring (1997). As no high-resolution Nav data was readily 

available for our study area, we followed the methodology recommended in the model 

documentation guidelines, which is based on the concept of soil fertility ranking. Using observed 

growth differences of forest stands of the same species under similar climate conditions but 

different soil types (Kirchen et al. 2017), it assumes that some soil types are more nitrogen limited 

than others (Wilson et al. 2005). We defined the nutrient availability range of each forest type with 

information from the forest type mapping and obtained a categorical index ranging from 1 (poor 

nutrients) to 5 (rich nutrients), from which we determined the mean Nav value with the following 

equation: 

𝑁𝑎𝑣 =  
(∆𝑁𝑎𝑣)

𝑠
∗ 𝜇𝑁 + 𝑀𝑖𝑛𝑁𝑎𝑣 

where ∆𝑁𝑎𝑣 was the difference between maximum (100) and minimum (30) Nav used in other 

Alpine landscapes (Seidl et al. 2019), 𝑠 is the number categories defining poor to rich nutrients (5), 

𝜇𝑁 is the mean value of the nutrient availability for the target forest type and  𝑀𝑖𝑛𝑁𝑎𝑣 is the 

minimum value of available nitrogen (30). This way, we maintained the rate Nav within the typical 

range of values used in other iLand applications (Seidl et al. 2019, Thom et al. 2022). As we did 

not have reliable Nav estimates for other land uses, we excluded non-forest areas that were 

assigned to a default value (e.g., the first quartile of the range distribution) to avoid running into 

potential crashes during model running. These cells, in any case, do not affect simulation 

outcomes. Landscape-scale Nav was further adapted during model evaluation to optimize 

simulated standing volume (refer to section Model evaluation in Results). The final Nav values 

http://www.forestsmonitor.com/


Mina et al. (2025)                                                                                         Forests Monitor 2(1), 49-96, 2025 

 

58 www.forestsmonitor.com  

 

were implemented in the environment grid at 100 m resolution for the entire project area (Figure 

S1 in Supplementary material).  

Soil carbon and dead organic matter pools 

Forest ecosystems play a fundamental role in the global carbon cycle thanks to their capacity to 

store carbon in soil and deadwood (Fahey et al. 2010, Augusto and Boca 2022). iLand integrates 

the principles of the ICBM/2N model (Kätterer and Andrén 2001) to model carbon in dead organic 

matter and soil pools dynamically across the landscape. To do so, the model requires initial 

estimates for the carbon pools in the form of spatially explicit data about coarse woody debris, 

litter carbon pools, and soil organic matter. Estimates for standing woody debris (i.e., snags) can 

also be optionally provided. These estimates are then used as reference values to calculate 

decomposition rates for litter, downed woody debris, and soil carbon during model evaluation and 

calibration (described in section on Carbon decomposition rates). 

To derive initial carbon pool values in forest areas, we used data from the third Italian National 

Forest Inventory (hereafter INFC; Gasparini et al. 2022). This information, as is often the case for 

forest inventories, was available at the point level only. Since there were only a dozen INFC plots 

inside our study area, to increase the number of data points we selected plots from outside the 

Venosta study area – yet within the administrative borders of South Tyrol – matching the forest 

types present in our study area. This resulted in a total of 251 plots containing standing and downed 

coarse deadwood data. According to the INFC methodological protocol, fine woody debris, litter, 

and soil carbon pools were measured only in a selection of representative plots, which in our case 

amounted to 58 plots. Some INFC variables were summed to best match the deadwood and soil 

parameters needed in iLand (Table S1 in Supplementary). We then imputed INFC plots data to 

each 100 x 100 m cell according to forest type (layer from Autonomous Province of 

Bolzano/Bozen 2010), elevation, slope, and aspect derived from the 10-m resolution DEM. Match 

between points and strata was prioritized if they aligned with all four characteristics. For those 

strata resulting in zero match with INFC points, we assigned values from similar forest types (e.g., 

for mixed pine-oak forests we averaged the values of pine and oak forests). For a few strata for 

which such a procedure was not possible, we used data from Tyrol (Austria), which were used to 

parametrize another similar forest landscape in the model (Seidl et al. 2019, Marzini et al. 2024). 
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The resulting imputed data were implemented as spatially distributed parameters in the 100 m 

resolution environment grid for areas covered by forest in the study area (Figure 3).  

 

Figure 3. Distribution of the initial values of soil (som C), litter (young labile C), downed woody 
debris (young refractory C) and standing woody debris (swd) in the Venosta study area (unit: t ha

-1
). 

 
Climate 

Climate clustering 

The aim of clustering the study area into climatically homogeneous regions is to reduce the amount 

of input data processed by the model while retaining the maximum variation across the elevational 

and topographical gradients. This is one of the most important steps to optimize simulation time 

in large study areas such as the Venosta. We performed a climate clustering using four climatic 

variables: minimum temperature, maximum temperature, precipitation sum, and potential solar 

radiation. Temperature and precipitation gridded data were retrieved as monthly long-term means 

(1980-2020) as described by Crespi et al. (2021). Solar radiation was derived from monthly raster 

maps of potential solar radiation corrected by topography and cloud cover at 100 m resolution for 

the entire South Tyrol province (Tscholl et al. 2021). Temperature and precipitation datasets were 

resampled from their original 250 m to 100 m resolution using bilinear interpolation.  

The cluster analysis was performed by the clustering algorithm CLARA (Kaufman and Rousseeuw 

1986) implemented in the R package cluster (Maechler et al. 2019). This algorithm is an extension 

to k-medoids (PAM) methods to deal with large data sets. Instead of finding medoids for the entire 
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data set, CLARA considers a small sample of the data with a fixed size and applies the PAM 

algorithm to generate an optimal set of medoids for the sample. The quality of resulting medoids 

is measured by the average dissimilarity between every object in the entire data set and the medoid 

of its cluster. The algorithm repeats the sampling and clustering processes a pre-specified number 

of times to minimize the sampling bias. The Venosta study area is characterized by a complex 

topography, with a median slope of 25.28° and an average height difference in slope direction 

between two contiguous 100-m cells of 47.22 m. Assuming a lapse rate of +0.65°C/100m, the 

average temperature difference between two neighboring cells in the landscape was then 0.30°C, 

therefore we aimed for 50% of the pixels to have a deviation less than 0.30°C, and ideally, 95% of 

the pixels to be below the difference of two pixels (0.60°C). We explored an increasing number of 

climate clusters from a minimum of 100 to a maximum of 1600 (Table S2). To estimate the optimal 

number of clusters, in addition to assessing deviations from the original dataset, we used the 

average silhouette method (Rousseeuw 1987). The silhouette width value is a measure of how 

similar an object is to its own cluster (cohesion) compared to other clusters (separation), ranging 

from −1 to +1, where a high value indicates that the object is well matched to its own cluster and 

poorly matched to neighboring clusters. The number of clusters that were more appropriate to 

capture topography in our region ranged between 500 and 1200 as the silhouette index seemed to 

be more comparable, with a peak at 800 and 1200 clusters (Figure S2). All tested clusters presented 

a temperature and precipitation deviation below 1°C and 19 mm. The average silhouette width 

indicated 800 clusters to be the most representative compared to the others, as they also matched 

our initial deviation expectations, obtaining 0.18°C and 0.61°C for 50% and 95% of the pixels, 

respectively (Table S2). We finally selected 800 as the best cluster number for our study area and 

each 1-ha resource unit was assigned to one climate cluster.  
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Figure 4. Visualization of the 800 climate clusters in the study area (right) and differences between 

clustered vs. non-clustered landscape for January minimum temperature (°C) across the landscape 
and in the form of a histogram (left panels). 

Historical climate series (1980-2020) 

High-resolution data in forest landscape models are necessary to represent climate variability 

across complex terrains such as mountain valleys characterized by a high topographic complexity 

(Torma et al. 2015). iLand requires climate inputs at daily resolution for the following variables: 

minimum temperature, maximum temperatures, precipitation, global radiation, and vapor pressure 

deficit (VPD; Figure 5). For the Venosta area, we obtained temperature and precipitation data by 

extending the high-resolution gridded datasets by Crespi et al. (2021). Series of daily maximum 

and minimum temperature and precipitation were retrieved at 250-m spatial resolution covering 

the reference period 1980-2020. Solar radiation daily series were derived from satellite data 

EUMETSAT, which covered the period 2004-2021 at 4-km resolution1. This dataset was 

compared with other available products with longer series but lower resolutions, such as E-OBS 

at 12-km resolution (Cornes et al. 2018), and it revealed to be more suitable to capture landscape 

heterogeneity due to its higher spatial resolution and homogeneous coverage of the domain. 

EUMETSAT data was downscaled from a 4-km to 250-m grid by a kriging-based approach 

considering elevation, slope orientation, and steepness as drivers for spatial distribution 

 
1 Refer to: https://landsaf.ipma.pt 
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(Bartkowiak et al. 2022). To consistently cover the entire reference period 1980-2020, solar 

radiation data before 2004 were reconstructed by following the procedure applied by Leidinger et 

al. (2018) in the context of the study by Seidl et al. (2019). The relative humidity (RH) needed to 

derive VPD was retrieved from the E-OBS data set (Cornes et al. 2018). To align it with the 

resolution of other variables, RH was also downscaled from 12-km to 250-m resolution using a 

kriging interpolation with elevation as a covariate from the KrigR package (Kusch and Davy 2022). 

 

Figure 5. Overview of 1980-2020 reference climate in the Venosta study area. Left panels: time series 
of climatic variables as landscape means. Lines indicate the average values over the entire area, while 
ribbons show the 95% confidence interval trend computed with a loess smoothing function. Right 
panels: spatial distribution across the area of the long-term means (1980-2020) mapped over the 800 
climate clusters. 

To prevent the interpolation from generating RH values higher than 100%, the quantity √100−𝑅𝐻 

was interpolated and transformed back into RH values after the interpolation. Lastly, all five 

variables covering the historical reference period 1980-2020 at 250-m resolution (Figure 5) were 

implemented into a SQLite-database containing one table per climate cluster linked to each 

resource unit. 

Wind speed and wind topographic pattern 

Wind is a crucial factor influencing ecological dynamics in forest ecosystems and it represents the 

main disturbance agent in European forests (Wohlgemuth et al. 2022, Patacca et al. 2023). Since 
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wind disturbances interacting with bark beetle outbreaks are expected to be amplified under future 

climate conditions (Seidl et al. 2017, Sommerfeld et al. 2021), it is key to include this disturbance 

driver into models of forest landscape dynamics. As our aim for future iLand applications in the 

Venosta study area is to study the potential impacts of wind and bark beetle, we prepared the 

landscape-specific inputs for the wind disturbance modules and evaluated the ability of the model 

to simulate wind and bark beetle disturbance (described in section on Model evaluation below). 

The iLand wind module requires two types of landscape-specific inputs: a topographic exposure 

modifier map (i.e., topo-modifier) to modulate the effect of topography on the exposure to wind, 

and a time series of wind events denoting wind speed, wind direction, and storm duration for 

different days of the year. The occurrence of a wind event on a specific day of the year is relevant 

because wind risk also depends on the effect of soil freezing and the presence of leaves. We derived 

the topo-modifier map (Figure S1) using DEM and hill shade mapping products following the 

approach by Seidl et al. (2014). To derive wind events at the daily resolution, wind direction, and 

wind speed data were obtained from the Integrated Nowcasting through Comprehensive Analysis 

(INCA) system (Haiden et al. 2011), which provided hourly wind data at 1-km resolution for 

Austria and South Tyrol. We downloaded INCA data covering the study area from the first 

available year (2012) to the end of 2020 and calculated daily values. For each year we identified 

the maximum gust speed and the associated wind direction. Since we found them to occur mainly 

during autumn or winter, we determined a wind event for each year as follows: we randomly 

sampled a day of the year, then we determined the relative wind speed by sampling a random value 

between i) the range of maximum gust speed for days within autumn and winter; ii) 0 and the 

maximum gust speed for the days outside autumn and winter. We repeated this procedure for every 

year to cover the period for model evaluation (see section on Natural disturbances in the Results).  

Vegetation  

One of the most demanding tasks in forest landscape models is to create a virtual representation of 

the aboveground vegetation that best resembles the current forest structure and composition. 

However, it is important that this initial virtual forest landscape is consistent with model logic 

(e.g., tree placement and competition effects) to avoid unrealistic vegetation development 

trajectories during the first simulated years. For this reason, but also because species- and size-

specific data on live individual trees and regeneration are rarely available in a spatially explicit 

form, forest landscape models are typically initialized with spin-up simulation routines. This 
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process assimilates the available vegetation data for a specific study area, which is used as a 

reference, incorporating historical disturbances such as past management interventions that have 

a long-lasting influence on forest stands (Thom et al. 2018). For the Venosta area, we used data 

from available forest management plans as reference vegetation state to drive a spin-up procedure 

to initialize trees in the landscape. Forest management plans were also used to define the spatial 

setup of the management units and forest stands across the area, in the perspective of simulating 

forest management strategies under climate change (Mina et al. 2022).  

Forest stand data and spatial setup  

To prepare our reference vegetation data and to define the spatial setup of the forest management 

we gathered information from regional forest management plans (FMPs) covering the entire study 

area (Figure 6). FMPs in South Tyrol are mandatory for publicly owned forests and for private 

properties larger than 100 ha. They are revised every 10 years and include stand-level information 

(e.g., stand volume, stand age, species share, site characteristics) and a description of the planned 

interventions in terms of timber removals in the medium term. For small-scale forest ownerships 

(< 100 ha), simplified management plans are available (Waldkartei or forest tables) reporting stand 

information at a lower level of detail. In the Venosta, 92.3% of the forests (11,629 ha) are publicly 

or collectively owned, with available data from forest management plans (Table S4). Only one 

section of the landscape (960 ha) fell under small-scale private ownership. For this, we obtained 

information from ca. 210 forest tables and aggregated them into 36 homogenous stands (with a 

minimum of 2.5 ha to a maximum of 130 ha), according to similarities in forest structure and 

composition. In the end, this resulted in the study area being subdivided into a total of 522 forest 

stands partitioned into 14 management units (Figure 6). Individual stands were assigned with a 

unique ID code including the unit identifier as the first two digits (e.g., unit 6, stands 21 = StandID 

621). For each stand, we compiled stand age, stand volume, and species shares (%), which were 

used as reference vegetation dataset for model spin-up. Additional data, such as stand mean and 

dominant height, was available only for a subset of public management units (5 out of 13 units). 

Height was not included in the reference vegetation dataset for model spin-up but was instead used 

for model evaluation (see section on Productivity in the Results). 
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Figure 6. The forest area divided into 14 management units (left) and into the 522 forest stands 

(right). 

Most of the areas outside the stockable area are non-forested (e.g., alpine grassland and rocks 

above the upper treeline), therefore, are not considered as a source of external seeds that can lead 

to the establishment and new recruitments. However, in four sections, the stockable area has a 

border with other forested areas (Figure S3); these were excluded from simulations but had an 

influence on available light on bordering trees and are potential sources of incoming seeds that 

may disperse into the stockable area. We defined these areas as our external seed belt. Following 

the model´s documentation, we split these areas into four sectors, whereas each of them was 

characterized by a unique species composition. We estimated species composition of each of these 

four sectors by averaging species shares for the forest stands bordering our stockable area based 

on data from regional FMPs (additional information in Figure S3). 

Spin-up simulation 

Current forest landscapes incorporate the legacy of past management and disturbances in their 

structure and composition (Garbarino and Weisberg 2020). Therefore, model initialization routines 

such as spin-up simulations – typically performed to assure that initial vegetation states are in line 

with model-internal processes – should include the effect of past forest management, which is 

often the most important driver of the current state of forest landscapes, particularly in highly 

anthropized regions such as the European Alps. In iLand, this is possible via a special spin-up 
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simulation process called legacy spin-up (Thom et al. 2018). This routine consists of a simulation 

of forest succession dynamics over a long period (e.g., 500-600 years) where simulated forest 

characteristics at the stand level are constantly compared to the reference vegetation dataset. 

During this spin-up, an adaptive management regime is applied to each individual stand (e.g., 

thinning, partial or clear cutting) using the agent-based forest management module (ABE; 

(Rammer and Seidl 2015). Stands are simulated over multiple rotation periods until conditions 

closest to the reference data are reached, as defined by a similarity score. This is stored in a 

temporary database that can be accessed to create a unique landscape “composite” to use as the 

initial state for simulations (called landscape snapshot).  

We followed the procedure described in Thom et al. (2018) and in Seidl et al. (2019), applying the 

typical management interventions for forests of the European Alps (e.g., planting, tending, 

thinning, and final cut) to each stand during the spin-up simulation. Spin-up was run over a period 

of 600 years, during which stand characteristics were iteratively compared with the reference 

vegetation dataset (described above), and management activities were dynamically adjusted using 

the ABE module. In the end, we created a landscape snapshot by merging all optimized stands into 

a single file representing the initial vegetation for the entire study area. This snapshot corresponds 

to the most up-to-date forest conditions as derived from the forest management plans (see Table 

S4). However, bark beetle outbreaks starting in 2022 affected forests of the study area, especially 

in the southern portion where there is a higher share of Norway spruce. Therefore, to achieve a 

better representation of current forest conditions, we used maps of forest damages due to bark 

beetle outbreaks derived from Sentinel 2 (Eurac Research 2024) to update the initial vegetation 

file. Since the available maps indicated stand-replacing damages for the years 2021 until the end 

of 2023, we removed mature Norway spruce trees directly in the landscape snapshot from those 

areas overlapping with the resource units covered by pure spruce forests. This way, we created 

some openings resembling recent bark beetle damages, which could be further analyzed to assess 

future post-disturbance forest recovery. 

Model evaluation  

iLand has been extensively evaluated and validated in forest landscapes of Central Europe and in 

the Alps (Seidl et al. 2019, Honkaniemi et al. 2020, Thom et al. 2022, Dobor et al. 2024). Since 

our study area was also located in the European Alps, we did not expect the need to re-evaluate 
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internal model parameters and species-specific parameters, which have been recently reviewed 

and recompiled (Thom et al. 2024). To evaluate model performance, we followed the pattern-

oriented modelling approach (Grimm et al. 2005) as typically executed in past model applications. 

To do so, we tested the ability of the model to: 1) reproduce potential natural vegetation 

composition; 2) simulate forest productivity; 3) emulate natural disturbances such as wind and 

bark beetle. For the first test, we ran the model for 1500 years from bare ground, in the absence of 

natural disturbances or management and assuming unlimited seed availability of all 32 tree species 

parameterized for Central Europe. After an initial successional sequence, the simulated 

composition stabilizes into an equilibrium representing the potential natural vegetation (PNV) of 

the region. We compared this equilibrium to regional forest type mapping products (Autonomous 

Province of Bolzano/Bozen 2010). To evaluate forest productivity, suitable independent data such 

as yield tables were not available for our study area. Therefore, we assessed the ability of the model 

to match reference vegetation data, such as standing volume during the spin-up simulation. We 

then used standing volume to calibrate model productivity by adapting landscape-level Nav, which 

was the biophysical parameter with the higher uncertainty rate derived using the concept of soil 

fertility ranking (see section on Biophysical parameters above). Furthermore, we compared 

simulated stand mean and dominant height resulting from the landscape snapshot (i.e., the initial 

state of vegetation generated with model spin-up) with stand height values from regional FMPs. 

Estimates of mean and dominant stand height were available for stands under public ownership 

(478 stands, 91.5%). This variable was not used as a reference value to drive the spin-up. 

Therefore, we used it as an independent variable to evaluate whether the model was able to 

reproduce dominant height as a proxy of forest productivity. This was evaluated for the selection 

of stands considering elevation and aspect (section on Productivity in the Results). Lastly, we 

assessed the ability of the model to reproduce wind and bark beetle disturbances across the study 

area. For this, we compared the amount of disturbed area to observational data derived from the 

European forest disturbance map (Senf and Seidl 2021). Since data from the disturbance maps was 

available from 1986, we ran a 35-year simulation using the landscape snapshot prior to the removal 

of recent beetle outbreaks at initial vegetation state and historical climate data for the years 1986-

2020, activating the bark beetle disturbances module and the wind input and time events data as 

described in the section on Climate. Since the disturbance maps did not differentiate between wind 

and beetle damages (Viana-Soto and Senf 2024), we compared the yearly and cumulative damages 
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for both agents. Within the model evaluation, we also assessed parameters related to 

decomposition rates of the dynamic soil carbon pools and calibrated them using reference values 

from inventory data as described above. All analyses were conducted in R, version 4.3.0 (R 

Development Core Team 2023). 

 

RESULTS 

 

Model initialization 

The vegetation composition generated by iLand with the legacy spin-up simulation matched well 

the reference values from forest management plans (Figure 7). No major differences were detected 

when comparing species composition between simulated and reference conditions, with forests of 

the study area mainly dominated by Norway spruce, followed by European larch and Swiss stone 

pine, with regard to species share by volume (Figure 7). Overall, the model slightly overestimated 

the dominance of Norway spruce and slightly underestimated the presence of silver fir and Swiss 

stone pine. Other species that are dominant at lower elevational belts (e.g., Scots pine, pubescent 

oak) were also correctly included, as well as black pine, which is currently present in the area as 

monospecific plantations close to the south-exposed valley bottom. 
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Figure 7. Comparison between reference vegetation dataset (target) and simulated species 
composition on the study area. Percents of species share were calculated with standing volume.  

After removing adult Norway spruce trees in areas hit by recent bark beetle outbreaks (see section 

on Vegetation), European larch was the species contributing the most in terms of basal area across 

the study area (37.9%), followed by Norway spruce and Swiss stone pine with 36.6% and 13.1%, 

respectively. The spatial distribution of the species in the landscape also matched well with the 

current forest conditions (Figure 8). The southern portion of the study (Stelvio) was mostly 

dominated by Norway spruce but with a component of silver fir and European larch, with Scots 

pine towards the valley bottom and Swiss stone pine at subalpine elevation belts (> 1500 m a.s.l.). 

In the northern portion (Mazia), black pine and pubescent oaks dominated the stands at the valley 

bottom, while the montane elevation belt (1000-1400 m a.s.l.) was mostly dominated by larch 

stands, which was promoted by past management for protection and pasture (Pircher and Broll 

2014). The internal part of the Mazia valley was instead dominated by European larch and Swiss 

stone pine, which matches well the reference vegetation dataset from the forest management plans.  
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Figure 8. The initial state of the vegetation as a result of the legacy spin-up routine driven by forest 
management data. The left panel (a) shows the dominant species, while the right panel (b) indicates 
stand volume (in m

3
). Patches in the southern portion of the area more dominated by larch and with 

a lower standing volume are those in which large spruces were removed following recent bark beetle 
damages.  

Model evaluation  

Potential natural vegetation 

Forest types emerging from the simulation of potential natural vegetation showed some differences 

from regional forest-type maps (Figure 9). PNV simulations indicated a higher dominance of Scots 

pine at montane elevations and a lower occurrence of European larch, which was mainly present 

in the upper montane to subalpine belts mixed with Swiss stone pine. PNV also showed a higher 

presence of dwarf mountain pine (Pinus mugo) at the upper treeline, mostly in the northern portion 

of the study area, which is less abundant in the local forest type mapping (Figure 9). It is important 

to consider that local forest type maps were developed to show the distribution of the potential 

natural forest types across the region with a practical viewpoint (Autonomous Province of 

Bolzano/Bozen 2010). Therefore, although they are useful for describing forest types along 

elevational belts, they partly embed the effect of past management and disturbances, which we 

excluded in our PNV simulations. Despite the presence of a higher number of species at the end 
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of the PNV simulation, the dominant species along the elevational belts were comparable to the 

reference forest types. This indicated that iLand was able to replicate satisfactorily the 

environmental gradient and reproduce differences in forest conditions at different elevations in our 

study area.   

Figure 9. Comparison between local forest type maps (left) and simulated forest types (right) obtained 
at the end of the 1500-year simulation of potential natural vegetation. Forest types from simulations 
were defined with tree species shares (basal area) from iLand´s outputs following the descriptions 
from the report of the forest types for South Tyrol. 

The successional sequence in the PNV simulation differed strongly between elevational belts 

(Figure 10). At low elevations (<1200 m a.s.l.), Scots pine, oaks and black pine showed the highest 

dominance among species, with a total basal area of about 20-25 m2/ha. This is realistic given that 

productivity in forests at the Venosta Valley bottom is generally low because limited by water 

availability. With increasing elevation, the potential forest becomes more dominated by Norway 

spruce, with productivity increasing (> 40 m2/ha basal area) due to higher water availability thanks 

to more abundant annual precipitation (see distribution of annual precipitation in Figure 5). Above 

1800 m a.s.l. until the upper treeline, European larch and Swiss stone pine gained abundance, 

which is also plausible as these are the two species that typically dominate the subalpine 

elevational belt in this region. European beech (Fagus sylvatica), which was included in the list of 

potential species, never gained dominance at any elevational belt and was even absent in the 
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montane belt (Figure 10). The development of basal area averaged across the entire study area is 

shown in Figure S4. 

 

Figure 10.  Basal area development in the PNV simulation under historical climate starting from the 
bare ground over the time period of 1500 years. Panels show basal area for different elevation classes 
(every 300 m). Species codes and names are reported in Table S3. 
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Productivity  

An initial comparison of simulated standing volume from model spin-up showed a general 

overestimation of this variable for forests of different age classes (Figure 11a). The simulated 

standing volume was in the range of 500±100 m3/ha, while the mean target stand volume was 

about 250±100 m3/ha (Figure 11b). This was likely due to overestimated values of Nav, which 

could be derived only with an indirect method (see section on Biophysical parameters). Therefore, 

we reduced the overall range of available nitrogen of all resource units in subsequent steps (90th, 

80th, 75th percentile of initially estimated values), re-ran the model spin-up procedure and 

compared again with target stand volumes. In the end, standing volume simulated with Nav values 

capped to the 75th percentile (i.e., -25% of Nav) yielded the best comparison with reference volume 

data, both at the landscape level and for the different age classes (Figure 11 c, b).  

 

Figure 11. Comparison of productivity (mean standing volume) between simulated and reference 

values. Upper panels (a, b) show the first comparison with the initial estimates of Nav, and lower 
panels (b, c) show the final comparison with adjusted Nav at the landscape level.  

The comparison of simulated and observed stand mean and dominant height indicated a general 

underestimation of simulated tree height at the landscape level (Figure 12). This underestimation 

was more evident for stands in the montane elevational belt (1300-1600 m a.s.l.) but less apparent 

at lower and upper elevations. Despite this underestimation, we decided not to adjust further model 

parameters, particularly considering that standing volume showed a good match with empirical 
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observations and that observed stand height from regional FMPs are also subject to uncertainty, 

given that they are mostly derived from ocular estimations rather than in situ measurements. 

Regardless, the simulated dominant height was positively correlated with observations (r=0.31), 

and the trend of the simulated dominant stand height along elevation and aspect gradients was in 

line with the trend of observed values (Figure 12). 

 

Figure 12. Evaluation of forest productivity with dominant stand height. Left panel Comparison of 
simulated (95

th
 percentile of tree height) and observed dominant stand height from FMPs. Right 

panels show simulated vs observed dominant height along the elevational and aspect gradients. Stand 
height in FMPs was not available for individual species but only aggregated at stand level.  

Natural disturbances 

The total disturbed area by wind and bark beetle over the simulated period 1986-2020 matched 

very well with respective observations (Figure 13). Compared to the European Forest Disturbance 

Maps (EFDM) data by Senf and Seidl (2021), iLand underestimated cumulative disturbances only 

by 6.1% (Figure 13b). Although the total disturbance impact was very close to observations, some 

differences could be detected when comparing observations with annual simulation outputs 

(Figure 13a). The observed impact of both wind and beetles was higher in some years (1989, 1995, 

2001), and the model was not able to replicate the magnitude of cumulative damages of these two 

agents in the study area in those years; instead, it simulated more frequent wind and beetle 

disturbances during the entire evaluation period. This is likely due to the occurrence of small-scale 

windthrow events in the study area that could not be replicated with the wind input data series 

(refer to section on Climate). 
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Figure 13. a) Time series (1986-2020) of disturbance impact (disturbed area in ha) from observations 
(EFDM data) and simulation outputs. Disturbances include both bark beetle and wind, as the EFDA 
maps did not distinguish individual agents. b) comparison of the cumulated disturbed area from bark 
beetle and wind between EFDM observations and simulations during the period 1986-2020. 

Carbon decomposition rates 

After running the first spin-up simulation, soil and deadwood carbon pools generated by iLand 

(Table S1) were compared with initial carbon pool values derived from forest inventory (refer to 

the section on Biophysical parameters). This is shown in Figure 14a, where it can be observed that 

simulated downed woody debris (young refractory C) and standing deadwood (snag C) values 

trends followed the reference values but with a slight underestimation. Simulated soil (soil C) and 

litter (young labile) carbon, instead, were simulated to be much lower than reference values. We 

re-run the model spin-up with adjusted decomposition rates for young labile, young refractory and 

soil organic matter carbon pools, assuming a uniform humification rate of 0.25, as recommended 

in the model documentation. After calibration (Figure 14b), simulated soil and litter carbon values 

stabilized close to reference data of about 100 t/ha and 12.5 t/ha, respectively. Downed woody 

debris and snags changed only slightly after calibration, stabilizing to much lower values yet close 

to reference data.    
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Figure 14. Development of the carbon pools needed in iLand over a) the first spin-up, and b) over 
the second spin-up after the adjustment of the decomposition rates. Blue lines indicate the reference 
carbon values averaged across the landscape based on INFC data. Beware of the different scales of 
the y-axis for the different pools. 

 

DISCUSSION 

 

Forest landscape models are becoming important tools to investigate forest ecosystems dynamics 

under changing conditions and future scenarios. However, the ability of a model to reproduce 

forest dynamics depends largely on the quality of input data (Reyer et al. 2016). Moreover, the 

evaluation of main simulation processes is fundamental to improving model reliability, especially 

given the increasing complexity of these tools (Bugmann and Seidl 2022). Although there is a 

strong willingness to apply these tools in forests worldwide, users often encounter challenges with 

model parameterization, exacerbated by the lack of suitable spatial data and the absence of 

comparable examples for establishing new study areas. These challenges, along with the 

significant investment of time needed to prepare and set up a new study area, greatly limit the 

applicability of such tools in supporting forest management. iLand has a user-friendly interface 

and extensive documentation that helps modellers and professionals to establish new applications. 

Despite this, preparing all the required input data to set up new study regions, including model 

initialization and evaluation, remains a strenuous and time-consuming task. For this reason, in the 

present study we documented the overall processes and the methodological steps needed to 
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initialize a large landscape in iLand, with the aim of promoting its application in other study areas 

in the Italian Alps and beyond.   

Regarding model initialization, we applied a spin-up simulation procedure to obtain the most 

representative condition of the current forest, using reference data from forest management plans 

after characterizing the project area with biophysical and climate conditions. Results from model 

spin-up in terms of species composition showed a good match with reference data, indicating that 

the internal dynamics of the model are able to reproduce in a satisfactory manner the differences 

in forest composition along the large environmental gradient of the area. The simulated landscape 

had, however, a slightly overestimated presence of Norway spruce compared to reference 

vegetation data, whereas Swiss stone pine and silver fir shares were somewhat underestimated. 

These results are consistent with other studies in mountain landscapes parametrized in iLand 

(Thom et al. 2018, Seidl et al. 2019), where Norway spruce was found to be more dominant in the 

simulated landscape compared to reference observations. This might be related to the 

parameterization of this species in the model, with Norway spruce being more competitive under 

certain climate conditions, or to the different ecological behavior of this species in the south of the 

Alps due to the genetic differentiation of the local population (Di Pierro et al. 2017). Since species 

parameters for Norway spruce in iLand are categorized to have a high level of confidence (Thom 

et al. 2024), we decided not to proceed with further calibration efforts at the species level. 

However, we also must acknowledge some limitations in our reference vegetation dataset. We 

could only gather data of forest composition, volume and age aggregated at stand level, as the 

number of forest inventory plots with individual-tree data was not enough to perform a spatial 

imputation on the most common forest types covering the entire area (as shown in other studies 

like Duveneck et al. 2015, Mina et al. 2021). Also, we are aware that for a number of stands, these 

data were derived from ocular estimates from the forest service personnel rather than from 

structured and spatially consistent measurements. Additionally, we did not use landscape-scale 

canopy height data to refine tree positions and canopy gaps and to better evaluate tree dominant 

height because the latest airborne-based LiDAR data was not recent enough (2007). Since airborne 

LiDAR data and other fine-resolution remote sensing products are becoming more and more 

accessible, our representation of initial vegetation could be improved in the near future. Another 

limitation that might have slightly affected model performance was the source of climate data. 

Parameterizing a study area with a single data source for all variables would be preferable since 
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this would ensure the overall consistency among variables. However, the procedures we adopted 

to align and resample the available gridded climate data from different products can be an adequate 

alternative and easily applicable to any other domain. Despite these limitations in the available 

vegetation and other input data, we believe that the initialized forest landscape is well 

representative of the initial vegetation and biophysical conditions of the study area, and can be 

used as a starting point for modelling future forest landscape development under different 

scenarios (Albrich et al. 2020a, Mina et al. 2022, Thom et al. 2022).  

Concerning model evaluation, we assessed the model's ability to reproduce forest conditions 

following a pattern-oriented procedure (Grimm et al. 2005) as recommended in previous iLand 

applications (Seidl et al. 2019, Dobor et al. 2024). This methodology has been proven to be useful 

to observe different patterns at various hierarchical organization levels for assessing the robustness 

of simulation models (Gallagher et al. 2021). The emergent vegetation simulated in the absence of 

natural and anthropic disturbances (PNV) was in line with the expected late-seral tree species 

composition along our environmental gradient. The forest categories dominating the study area at 

the simulated climax were plausible given the climatic limitations, with oaks- and pine-dominated 

forests covering the lower montane elevational belt, transitioning to Norway spruce and larch-

stone pine forests towards the upper montane to subalpine elevations (Figure 9). Compared to other 

landscapes parameterized in iLand (Albrich et al. 2018, Seidl et al. 2019, Thom et al. 2022, Dobor 

et al. 2024), our study area is the first one located in the south of the European Alps, and the first 

example of a landscape sited within a dry inner-alpine valley where species composition and tree 

growth at the valley bottom are strongly limited by water availability (Rigling et al. 2013, Obojes 

et al. 2024). It is interesting to note that, European beech (Fagus sylvatica) – which was included 

in the list of potential species and often simulated as one of the main climax species (Dobor et al. 

2024) – was absent at all elevational belts (Figure 10). This is coherent with observations since 

beech is practically absent in the Venosta Valley because of insufficient relative humidity and due 

to a too-continental climate preventing its establishment and growth (Zischg et al. 2019). Our PNV 

simulations indicate that iLand was able to capture the environmental constraints driving 

regeneration dynamics and inter-specific competition in landscapes of the southern edge of the 

European Alps. Our comparison with regional-type mapping, however, should be taken cautiously 

for two reasons. First, the categorization of the forest into forest types (see Figure 9) could not be 

replicated precisely, as no guidelines about the criteria used for realizing the forest categories 
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present in the regional maps were available (Autonomous Province of Bolzano/Bozen 2010). 

Therefore, the forest categories that we derived using iLand outputs could have been different if 

we chose different thresholds of basal area of the individual species to reclassify the map. Second, 

we cannot be sure that the regional forest-type maps really describe the potential natural vegetation 

of the province since, among other cartographic products, current vegetation maps were also used 

as a starting point for building these reference maps. Despite this limitation in reference data, iLand 

reproduced potential natural vegetation very close to expectations for our study area and in line 

with other simulation studies for Central European and Alpine landscapes (Thom et al. 2018, Seidl 

et al. 2019). 

As recommended by model developers, evaluation tests vary among landscapes due to the 

availability and the limitation of reference data in each study area (Rammer et al. 2024). In our 

case, we followed an iterative approach when evaluating stand productivity, knowing that our 

initial estimates of available nitrogen – an important biophysical property driving tree growth 

(Rennenberg and Dannenmann 2015) – were highly uncertain due to the lack of high-resolution 

spatial data for this variable. We therefore used standing volume as comparison data to calibrate 

available nitrogen levels at the landscape level and subsequently evaluated forest productivity with 

independent observations of stand dominant height. We are aware that this evaluation process 

could be improved if local forest inventories and yield tables data were available. However, our 

evaluation and calibration method employs data that are typically available in local forest 

management plans or openly-available remote sensing products and can therefore be applied in 

regions that lack long-term inventory series (e.g.,  Bychkov and Popova 2023).  

Evaluation tests also depend on the type of application that is expected to be carried out after the 

parameterization of the study area. In our case, our aim for future studies is to apply iLand in the 

Venosta area to assess the vulnerability of these forests to climate-change-induced disturbances 

but also to investigate the future carbon sink potential of Alpine forests. For this reason, we tested 

the ability of the model to capture the most important disturbances occurring in the Alps and 

evaluated the carbon cycling module. Evaluating the model´s capability to emulate natural 

disturbances is key when models include interactions between disturbance types, such as in our 

case between wind and bark beetle (Sturtevant and Fortin 2021). Independent comparison data of 

forest disturbances are often available for very short time series, which most of the time limits the 

ability to fully evaluate the model, even when using the pattern-based approach. Our evaluation 
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results showed that the model was able to reproduce the cumulative effects of wind and bark beetle 

disturbances regime in forests of the Italian Alps very well, but it was less precise to capture yearly 

variation of disturbance intensity. This was somewhat expected since the wind input data was 

designed to represent wind patterns for the historical reference period rather than to replicate 

precisely the intensity of windstorms that occurred during recent years. Analogous results were 

shown by Thom et al. (2022), where the model reproduced very well cumulative disturbed areas 

against observations, but it was less precise to replicate annual disturbances. Also, disturbance 

maps used as independent observations often report cumulative damages from multiple 

disturbance agents (Senf and Seidl 2021) although more recent mapping products separate logging 

and fire disturbances from wind and beetles (Viana Soto and Senf 2024). In our case, disturbance 

maps combined wind and bark beetle damages; therefore, we could not compare the damages for 

single disturbance agents. Longer series of wind disturbance data would be ideal, but remote 

sensing products typically cover only a few decades. However, since the aim of dynamic landscape 

models like iLand is to capture the impact of disturbance regimes in the long term – and not to 

exactly replicate a specific disturbance event – our evaluation can be considered satisfactory.  

Regarding forest carbon pools, modelling changes in carbon fluxes and storage across forested 

landscapes has been challenging due to the intricate interactions between landscape structure and 

ecosystem processes (Chen et al. 2014). Only a few forest landscape models, including iLand, 

explicitly integrate carbon dynamics (Dymond et al. 2012, Albrich et al. 2023, Lucash et al. 2023), 

but often require more parameters and intense calibration exercises for soil pools initialization 

(Dymond et al. 2016). Forest carbon pools data is rarely available as spatially continuous datasets, 

as was the case for our study area, where we had to perform a spatial imputation using inventory 

data from sampling points distributed also outside our project area. Therefore, we acknowledge 

that the data used might not be fully representative of the variation range of carbon pools within 

our study area, and relative uncertainties might be further amplified during the scaling processes, 

as shown in previous studies (Vanguelova et al. 2016). Despite these limitations, we presented a 

methodology that can be easily replicated in other landscapes in Italy, as we made the best use of 

publicly available data from the Italian National Forest Inventory (Gasparini et al. 2022). 

Moreover, these data showed also to be comparable with values observed in other forest areas of 

the Alpine region (Prietzel and Christophel 2014, De Vos et al. 2015, Canedoli et al. 2020), 

confirming the plausibility of the gathered information although derived from sample plots within 
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a larger region (e.g., South Tyrol) than the project area. Despite having used data from different 

sources, our results improved the robustness of the initialized landscape in iLand, which can be 

used to run future investigations on carbon cycling dynamics to study forest mitigation potential 

to climate change under a suite of different scenarios.  

Despite some caveats mentioned above, the iLand model showed good potential for applications 

in the Italian Alps. The model can be now applied in the Venosta study area to investigate forest 

development under different management, disturbances and climate scenarios, which would be 

useful to inform decision-makers in forest policy and ecosystem management (e.g., Maxwell et al. 

2020, Mina et al. 2022). As future avenues, given the increasing availability of data from individual 

tree detection laser scanners at large-scale (Hyyppä et al. 2024), such models can make use of 

more accurate reference data to initialize current vegetation. This, however, should be considered 

with caution, as higher resolution initialization data also requires even more complex data 

preparation routines. The forest modelling community should therefore work on developing ways 

to fully utilize the newly available data wealth efficiently for model initialization (Keane et al. 

2015, Furniss et al. 2022). Another prospect for future development is to better link the outputs of 

forest models with realistic visualization of the forests for better communication with stakeholders 

(Huang et al. 2021). Building digital twins of forests and applying virtual reality tools using data 

generated from forest models could better support forest management by demonstrating the impact 

of silvicultural interventions on forest structure at the landscape scale (Holm and Schweier 2024). 

An important aspect to consider, particularly if models are meant to be operated by managers and 

stakeholders, is model choice. Complex process-based landscape models like iLand are indeed 

valuable for exploring landscape levels dynamics under climate change and disturbances over the 

longer term but are not meant to provide operational information on a stand-level (Shifley et al. 

2017). Therefore, for shorter-term management planning and more basic applications in forestry 

other models with less heavy data requirements and simpler disturbance risk implementation may 

be more suitable (Hillebrand et al. 2023, Blattert et al. 2024). Lastly, although process-based 

landscape models like iLand need a lot of information for setup and testing, flexible data 

processing and integration methods, as shown in this study, allow the use of various data types and 

resolutions. This makes these models a powerful, widely applicable tool for exploring the 

interactions of forest dynamics, climate, disturbances and management.  
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SUPPLEMENTARY MATERIAL 

 

 

 

 

 

 

 

 

 

 

Figure S1. Additional figures showing spatially continuous parameters as input data in the model. 
Left: plant available nitrogen (kg ha

-1
 year

-1
) displayed only for the area covered by forest (see section 

on Biophysical parameters). Right: topex-to-distance map showing the topo-grid modifier used to 
scale wind effect across the study area by adding these values to estimated wind speeds (see section 
on Climate). 
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Table S1. Description of the different deadwood and soil carbon pool variables available from the 
Italian forest inventory (INFC) that we related to the spatially distributed parameters needed in iLand 
(e.g., swdC, youngRefractoryC). Number of plots indicates from how many INFC plots were the 
data retrieved and imputed to the forest categories of our study area.   

INFC 
iLand 

Code Description n. plots Code Description 

Capm_ha Standing dead trees (snags) 251 swdC 
Carbon content in standing woody 

debris 

Cce_ha Stumps 251 
youngRefractoryC 

 

Carbon content in the pools for 

other wood (branches and coarse 

roots) 
Cne_ha 

Coarse woody debris (dbh > 

9.5 cm) 
251 

Cnef_ha 
Fine woody debris (dbh < 9.5 

cm) 
58 

youngLabileC Carbon content of litter pool 

Clt_ha Litter carbon pool 58 

Cor_ha 
Forest floor (organic  surface 

layer) 
58 

somC 

 

Carbon content of soil organic 

matter - soil pool 
Css_ha 

Mineral surface horizon (soil 

depth <= 10 cm) 
58 

Csp_ha 
Mineral horizon (soil depth 10-

30 cm) 
58 

 

Table S2. Accuracy of the climate clustering. The numbers indicate the deviation of the clusters to 
the real data points (100m cells). For example, with N=800 clusters, 95 of the cells have a deviation 
in mean annual temperature from their original value ≤ 0.611. The final number of clusters was 
chosen to be 800 (*). 

 ΔT (°C) ΔPrecip (mm) ΔRad (kWh/m²) 

n. clusters 95% ≤ 50% ≤ 95% ≤ 50% ≤ 95% ≤ 50% ≤ 

100 1.157 0.360 19.116 6.547 1.429 0.406 

200 0.920 0.293 15.433 5.110 1.186 0.326 

300 0.832 0.256 13.313 4.330 1.065 0.293 

400 0.779 0.238 12.133 4.012 0.958 0.258 

500 0.700 0.221 10.923 3.727 0.894 0.247 

600 0.672 0.209 10.452 3.602 0.839 0.224 

700 0.644 0.200 9.862 3.248 0.806 0.214 

800* 0.611 0.188 9.424 3.145 0.761 0.205 

900 0.588 0.181 9.153 2.978 0.735 0.191 

1000 0.572 0.174 8.663 2.869 0.713 0.183 

1200 0.536 0.164 8.207 2.707 0.650 0.171 

1400 0.507 0.153 7.746 2.542 0.628 0.167 

1600 0.480 0.143 7.423 2.438 0.600 0.154 
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Figure S2. The average silhouette width for the number of climate clusters evaluated. 

Table S3. Acronyms of the tree species used in iLand and their relative names. 

iLand code Tree species  iLand code Tree species 

abal Abies alba  pimu Pinus mugo 

acca Acer campestre  pini Pinus nigra 

acpl Acer platanoides  pisy Pinus sylvestris 

acps Acer pseudoplatanus  poni Populus nigra 

algl Alnus glutinosa  potr Populus tremula 

alin Alnus incana  psme Pseudotsuga menziesii 

alvi Alnus viridis  qupe Quercus petraea 

bepe Betula pendula  qupu Quercus pubescens 

cabe Carpinus betulus  quro Quercus robur 

casa Castanea sativa  rops Robinia pseudoacacia 

coav Corillus avellana  saca Salix caprea 

fasy Fagus sylvatica  soar Sorbus aria 

frex Fraxinus excelsior  soau Sorbus aucuparia 

lade Larix decidua  tico Tilia cordata 

piab Picea abies  tipl Tilia platyphyllos 

pice Pinus cembra  ulgl Ulmus glabra 
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Table S4. Information on the management units (MU) covering the study area. MU indicate the 
code used in iLand to define unique management units linked to stand ids. The year indicates the 
latest renewal of the forest management plan for which most up-to-date information was available at 
the moment of data collection (2021). The period indicates the period of reference valid for the 
planning of future interventions.  

MU Name (German/Italian) Ownership Year Period 

1 Glurns / Glorenza Public (Town) 2013 2014-2023 

2 Schludern / Sluderno Public (Town) 2011 2012-2021 

3 Stilfs / Stelvio Public (Hamlet) 2018 2019-2028 

4 Laas / Lasa Public (Hamlet) 2019 2020-2029 

5 Tschengls / Cengles Public (Hamlet) 2010 2011-2020 

6 Matsch / Mazia Public (Hamlet) 2015 2016-2025 

7 Lichtenberg / Monte Chiaro Public (Hamlet) 2011 2012-2021 

8 Sulden / Solda Public (Hamlet) 2012 2013-2022 

9 Tartsch / Tarces Public (Hamlet) 2018 2019-2028 

10 Mals / Malles Public (Hamlet) 2012 2013-2022 

11 Prad / Prato Public (Hamlet) 2010 2011-2020 

12 Domane Sulden / Demanio Solda Public (Province) 2015 2016-2025 

13 Alliz / Alliz Private (Collective) 2014 2015-2024 

14 Tanas / Tanas Private (Private owners) 2018 2019-2028 

 

Figure S3. The forested areas outside the active simulation area, with their estimated species 
composition. These areas were considered to define the external seed belt that influences shading, 
external seed availability and the wind module. The rest of the stockable area, instead, bordered 

with natural barriers to seed dispersal, such as alpine rocks, ridge tops and urban settlements. 
Additional descriptions of the seed belt in iLand are available in the online documentation of the 
model (https://iland-model.org/external+seeds) 
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Figure S4. Development of forest succession averaged across the entire study area from bare ground 
over 1500 years in the absence of natural disturbances or management. For species names and codes 
see Table S3. 
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